ORCA Documentation

Release alpha

Antoine Hoarau

May 30, 2018

Installation and Configuration

1	Optimisation Vector	3
2	Cartesian Acceleration	5
3	Dynamics Equation	7

9

ORCA is a c++ whole-body reactive controller meant to compute the desired actuation torque of a robot given some tasks to perform and some constraints.

The problem is written as a quadratic problem :

$$\min_{x} \frac{1}{2} x^{t} H x + x^{t} g$$

subject to
$$lb \le x \le ub$$

$$lb_{A} \le A x \le u b_{A}$$

- x the optimisation vector
- H the hessian matrix $(size(x) \times size(x))$
- g the gradient vector $(size(x) \times 1)$
- A the constraint matrix $(size(x) \times size(x))$
- 1b and ub the lower and upper bounds of $x (size(x) \times 1)$
- 1bA and ubA the lower and upper bounds of A $(size(x) \times 1)$

Tasks are written as weighted euclidian distance function :

$$w_{task} \| \mathbf{E} x + \mathbf{f} \|_{W_{norn}}^2$$

- x the optimisation vector, or **part** of the optimisation vector
- E the linear matrix of the affine function $(size(x) \times size(x))$
- f the origin vector $(size(x) \times 1)$
- w task the weight of the tasks in the overall quadratic cost (scalar [0:1])
- W norm the weight of the euclidean norm $(size(x) \times size(x))$

Given n_t tasks, the **overall cost function** is such that:

$$\frac{1}{2}x^{t}Hx + x^{t}g = \frac{1}{2}\sum_{i=1}^{n_{t}} w_{task,i} \|\mathbf{E}_{i}x + \mathbf{f}_{i}\|_{W_{norm,i}}^{2}$$

Constraints are written as double bounded linear function :

$$lb_C \leq Cx \leq ub_C$$

- C the constraint matrix $(size(x) \times size(x))$
- 1bC and ubC the lower and upper bounds of A $(size(x) \times 1)$

The remainder of the documentation describes "classical" tasks and cosntraints which one may want to define

CHAPTER 1

Optimisation Vector

The optimisation vector in the quadratic problem is written as follows :

$$X = \begin{pmatrix} \dot{\nu}^{fb} \\ \dot{\nu}^{j} \\ \tau^{fb} \\ \tau^{g} \\ e_{w_0} \\ \vdots \\ e_{w_n} \end{pmatrix}$$

- $\dot{\nu}^{fb}$: Floating base joint acceleration (6 × 1)
- $\dot{\nu}^{j}$: Joint space acceleration $(n_{dof} \times 1)$
- τ^{fb} : Floating base joint torque (6 × 1)
- τ^j : Joint space joint torque $(n_{dof} \times 1)$
- ${}^{e}w_{n}$: External wrench (6 × 1)
- τ^{fb} : Floating base joint torque (6 × 1)
- τ^j : Joint space joint torque $(n_{dof} \times 1)$
- ${}^{e}w_{n}$: External wrench (6 × 1)

In ORCA those are called *Control variables* and should be used to define every task and constraint. In addition to those necessary variables, you can specify also a combination :

- $\dot{\nu}$: Generalised joint acceleration, concatenation of $\dot{\nu}^{fb}$ and $\dot{\nu}^{j}$ $(6 + n_{dof} \times 1)$
- τ : Generalised joint torque, concatenation of τ^{fb} and τ^{j} $(6 + n_{dof} \times 1)$
- X : The whole optimisation vector $(6 + n_{dof} + 6 + n_{dof} + n_{wrenches} 6 \times 1)$
- ${}^{e}w$: External wrenches $(n_{wrenche} 6 \times 1)$
- X : The whole optimisation vector $(6 + n_{dof} + 6 + n_{dof} + n_{wrenches} 6 \times 1)$
- ^{e}w : External wrenches ($n_{wrenche}6 \times 1$)

CHAPTER 2

Cartesian Acceleration

 $w_{task} \cdot \|\mathbf{E}x + \mathbf{f}\|_{W_{norm}}$ $\mathbf{Y}_{n \times 1} = \underset{n \times p}{X} \times \underset{p \times 1}{\theta} + \underset{n \times 1}{\varepsilon}$

Chapter $\mathbf{3}$

Dynamics Equation

- Control variable : X (whole optimisation vector)
- **Type** : Equality constraint
- Size : $ndof \times size(X)$

$$\begin{bmatrix} -M & S_{\tau} & J_{e_w} \end{bmatrix} X = C + G$$

```
orca::constraint::DynamicsEquationConstraint dyn_eq;
dyn_eq.loadRobotModel( urdf );
dyn_eq.setGravity( Eigen::Vector3d(0,0,-9.81) );
dyn_eq.update(); // <-- Now initialized</pre>
```


