Minimum jerk Cartesian trajectory following

Note

The source code for this example can be found in [orca_root]/examples/gazebo/06-trajectory_following.cc, or alternatively on github at: https://github.com/syroco/orca/blob/dev/examples/gazebo/06-trajectory_following.cc

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include <orca/orca.h>
#include <orca/gazebo/GazeboServer.h>
#include <orca/gazebo/GazeboModel.h>

using namespace orca::all;
using namespace orca::gazebo;

class MinJerkPositionTrajectory {
private:
    Eigen::Vector3d alpha_, sp_, ep_;
    double duration_ = 0.0;
    double start_time_ = 0.0;
    bool first_call_ = true;
    bool traj_finished_ = false;

public:
    MinJerkPositionTrajectory (double duration)
    : duration_(duration)
    {
    }

    bool isTrajectoryFinished(){return traj_finished_;}

    void resetTrajectory(const Eigen::Vector3d& start_position, const Eigen::Vector3d& end_position)
    {
        sp_ = start_position;
        ep_ = end_position;
        alpha_ = ep_ - sp_;
        first_call_ = true;
        traj_finished_ = false;
    }

    void getDesired(double current_time, Eigen::Vector3d& p, Eigen::Vector3d& v, Eigen::Vector3d& a)
    {
        if(first_call_)
        {
            start_time_ = current_time;
            first_call_ = false;
        }
        double tau = (current_time - start_time_) / duration_;
        if(tau >= 1.0)
        {
            p = ep_;
            v = Eigen::Vector3d::Zero();
            a = Eigen::Vector3d::Zero();

            traj_finished_ = true;
            return;
        }
        p =                         sp_ + alpha_ * ( 10*pow(tau,3.0) - 15*pow(tau,4.0)  + 6*pow(tau,5.0)   );
        v = Eigen::Vector3d::Zero() + alpha_ * ( 30*pow(tau,2.0) - 60*pow(tau,3.0)  + 30*pow(tau,4.0)  );
        a = Eigen::Vector3d::Zero() + alpha_ * ( 60*pow(tau,1.0) - 180*pow(tau,2.0) + 120*pow(tau,3.0) );
    }
};


int main(int argc, char const *argv[])
{
    if(argc < 2)
    {
        std::cerr << "Usage : " << argv[0] << " /path/to/robot-urdf.urdf (optionally -l debug/info/warning/error)" << "\n";
        return -1;
    }
    std::string urdf_url(argv[1]);

    orca::utils::Logger::parseArgv(argc, argv);

    auto robot = std::make_shared<RobotDynTree>();
    robot->loadModelFromFile(urdf_url);
    robot->setBaseFrame("base_link");
    robot->setGravity(Eigen::Vector3d(0,0,-9.81));
    RobotState eigState;
    eigState.resize(robot->getNrOfDegreesOfFreedom());
    eigState.jointPos.setZero();
    eigState.jointVel.setZero();
    robot->setRobotState(eigState.jointPos,eigState.jointVel);

    orca::optim::Controller controller(
        "controller"
        ,robot
        ,orca::optim::ResolutionStrategy::OneLevelWeighted
        ,QPSolver::qpOASES
    );

    auto cart_task = std::make_shared<CartesianTask>("CartTask-EE");
    controller.addTask(cart_task);
    cart_task->setControlFrame("link_7"); //
    Eigen::Affine3d cart_pos_ref;
    cart_pos_ref.translation() = Eigen::Vector3d(1.,0.75,0.5); // x,y,z in meters
    cart_pos_ref.linear() = Eigen::Quaterniond::Identity().toRotationMatrix();
    Vector6d cart_vel_ref = Vector6d::Zero();
    Vector6d cart_acc_ref = Vector6d::Zero();

    Vector6d P;
    P << 1000, 1000, 1000, 10, 10, 10;
    cart_task->servoController()->pid()->setProportionalGain(P);
    Vector6d D;
    D << 100, 100, 100, 1, 1, 1;
    cart_task->servoController()->pid()->setDerivativeGain(D);


    const int ndof = robot->getNrOfDegreesOfFreedom();

    auto jnt_trq_cstr = std::make_shared<JointTorqueLimitConstraint>("JointTorqueLimit");
    controller.addConstraint(jnt_trq_cstr);
    Eigen::VectorXd jntTrqMax(ndof);
    jntTrqMax.setConstant(200.0);
    jnt_trq_cstr->setLimits(-jntTrqMax,jntTrqMax);

    auto jnt_pos_cstr = std::make_shared<JointPositionLimitConstraint>("JointPositionLimit");
    controller.addConstraint(jnt_pos_cstr);

    auto jnt_vel_cstr = std::make_shared<JointVelocityLimitConstraint>("JointVelocityLimit");
    controller.addConstraint(jnt_vel_cstr);
    Eigen::VectorXd jntVelMax(ndof);
    jntVelMax.setConstant(2.0);
    jnt_vel_cstr->setLimits(-jntVelMax,jntVelMax);

    double dt = 0.001;
    double current_time = 0.0;

    GazeboServer gzserver(argc,argv);
    auto gzrobot = GazeboModel(gzserver.insertModelFromURDFFile(urdf_url));

    ///////////////////////////////////////
    ///////////////////////////////////////
    ///////////////////////////////////////
    ///////////////////////////////////////

    MinJerkPositionTrajectory traj(5.0);
    int traj_loops = 0;
    bool exit_control_loop = true;
    Eigen::Vector3d start_position, end_position;


    cart_task->onActivationCallback([](){
        std::cout << "Activating CartesianTask..." << '\n';
    });

    bool cart_task_activated = false;

    cart_task->onActivatedCallback([&](){
        start_position = cart_task->servoController()->getCurrentCartesianPose().block(0,3,3,1);
        end_position = cart_pos_ref.translation();
        traj.resetTrajectory(start_position, end_position);
        std::cout << "CartesianTask activated. Removing gravity compensation and begining motion." << '\n';
        cart_task_activated = true;
    });

    cart_task->onComputeBeginCallback([&](double current_time, double dt){
        if (cart_task->getState() == TaskBase::State::Activated)
        {
            Eigen::Vector3d p, v, a;
            traj.getDesired(current_time, p, v, a);
            cart_pos_ref.translation() = p;
            cart_vel_ref.head(3) = v;
            cart_acc_ref.head(3) = a;
            cart_task->servoController()->setDesired(cart_pos_ref.matrix(),cart_vel_ref,cart_acc_ref);
        }
    });

    cart_task->onComputeEndCallback([&](double current_time, double dt){
        if (cart_task->getState() == TaskBase::State::Activated)
        {
            if (traj.isTrajectoryFinished()  )
            {
                if (traj_loops < 5)
                {
                    // flip start and end positions.
                    auto ep = end_position;
                    end_position = start_position;
                    start_position = ep;
                    traj.resetTrajectory(start_position, end_position);
                    std::cout << "Changing trajectory direction." << '\n';
                    ++traj_loops;
                }
                else
                {
                    std::cout << "Trajectory looping finished. Deactivating task and starting gravity compensation." << '\n';
                    cart_task->deactivate();
                }
            }
        }
    });

    cart_task->onDeactivationCallback([&cart_task_activated](){
        std::cout << "Deactivating task." << '\n';
        cart_task_activated = false;
    });

    cart_task->onDeactivatedCallback([](){
        std::cout << "CartesianTask deactivated. Stopping controller" << '\n';
    });



    gzrobot.setCallback([&](uint32_t n_iter,double current_time,double dt)
    {
        robot->setRobotState(gzrobot.getWorldToBaseTransform().matrix()
                            ,gzrobot.getJointPositions()
                            ,gzrobot.getBaseVelocity()
                            ,gzrobot.getJointVelocities()
                            ,gzrobot.getGravity()
                        );
        // All tasks need the robot to be initialized during the activation phase
        if(n_iter == 1)
            controller.activateTasksAndConstraints();

        controller.update(current_time, dt);

        if (cart_task_activated)
        {
            if(controller.solutionFound())
            {
                gzrobot.setJointTorqueCommand( controller.getJointTorqueCommand() );
            }
            else
            {
                gzrobot.setBrakes(true);
            }
        }
        else
        {
            gzrobot.setJointGravityTorques(robot->getJointGravityTorques());
        }
    });

    std::cout << "Simulation running... (GUI with \'gzclient\')" << "\n";
    gzserver.run();
    return 0;
}